Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 40, 2001 - Issue 6
91
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

BUOYANT CONVECTION IN A SQUARE CAVITY PARTIALLY FILLED WITH A HEAT-GENERATING POROUS MEDIUM

Pages 601-618 | Published online: 30 Nov 2010
 

Abstract

Steady-state buoyant convection in a rectangular cavity, partially filled with a fluid-saturated porous medium with spatially uniform internal heat generation, is considered. The Brinkman-extended Darcy model in the porous region is adopted. The overall Rayleigh number is large to render a boundary-layer-type global flow pattern. Scale analysis is performed to obtain a rudimentary understanding of the flow characteristics. In parallel with the theoretical endeavors, numerical solutions are secured over broad ranges of nondimensional parameters. The results indicate that there exists an asymptotic convection regime where the flow is nearly independent of the permeability and conductivity of the porous medium. The effect of the thermal conductivity of porous material is appreciable in the intermediate regime. In the conduction-dominant regime, the porous region acts like a heat-generating solid block. The numerical study gives credence to the reliability of the theoretical arguments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.