Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 43, 2003 - Issue 3
76
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

TEMPERATURE DISTRIBUTION OF AN OPTICAL FIBER TRAVERSING THROUGH A CHEMICAL VAPOR DEPOSITION REACTOR

&
Pages 221-237 | Published online: 30 Nov 2010
 

Abstract

A fundamental understanding of how reactor parameters influence the fiber surface temperature is essential to manufacturing high-quality optical fiber coatings by chemical vapor deposition (CVD). In an attempt to understand this process better, a finite-volume model has been developed to study the gas flow and heat transfer of an optical fiber as it travels through a CVD reactor. This study showed that draw speed significantly affects fiber temperature inside the reactor, with temperature changes over 50% observed under the conditions studied. Other parameters affecting fiber temperature include fiber radius, fiber coating emissivity, and gas flow velocity at inlet. Multiple heat transfer modes contribute to these phenomena, with convection and radiation heat transfer dominating the process. The numerical model is validated against analytical cases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.