Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 49, 2006 - Issue 10
145
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Analysis of EDL Effect on Heat Transfer Characteristic of 3-D Developing Flow in a Microchannel

&
Pages 991-1007 | Received 28 Jan 2005, Accepted 10 Sep 2005, Published online: 22 Sep 2006
 

Abstract

It has been suggested that microchannels are very effective heat transfer devices. However, the electrical double layer (EDL) effect in microchannels is suspected to be significant. In this article, two EDL models together with Navier-Stokes equations are used to compute 3-D developing microchannel flow. The Poisson-Boltzmann model (PBM) has been shown to be a promising tool in studying the EDL effect for developed microchannel flow, with acceptable accuracy and efficiency. However, it has been reported that the assumption of Boltzmann distribution in the PBM for electric ion concentration distribution is questionable in the developing flow. The Nernst-Planck model (NPM), with its two extra partial differential equations (PDEs), to predict the ion concentration distribution has been suggested to be a more appropriate model for developing microchannel flow, but more RAM and CPU are needed as compared to the PBM. The governing equations for both models are discretized for developing rectangular microchannel flows in Cartesian coordinates. An additional source term, which is related to the electric potential resulting from the EDL effect is introduced in the conventional z-axis momentum equation as a body force, thereby modifying the flow characteristics. A finite-volume scheme is used to solve the PDEs. The results predicted by both EDL models with and without EDL effects are shown. It is concluded that the differences in heat transfer performance of a microchannel predicted using the two models are insignificant. However, the performance of the microchannel is significantly affected by the EDL effect.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.