Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 47, 2005 - Issue 9
56
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Steady Conjugate Heat Transfer from X-Ray or Laser-Heated Sphere in External Flow at Low Reynolds Number

, &
Pages 849-874 | Received 29 Jan 2004, Accepted 18 Oct 2004, Published online: 01 Sep 2006
 

ABSTRACT

A laser or an X-ray beam is used to heat a sphere that is immersed in uniform external flow. Temperature distributions as well as local and average convective heat transfer coefficients are calculated in order to evaluate the efficacy of cooling the solid sphere. The present work extends previous studies by: (1) applying a unique heat source imposed by irradiating the sphere with an intense X-ray energy beam; (2) performing the conjugate heat transfer analysis in fluid and solid domain; and (3) calculating the internal and surface temperature distribution. Absorption of the irradiation results in nonuniform heat generation, having an exponential spatial distribution of heat source. The limiting cases of heat source distribution are localized surface “laser” heating and near-uniform heat generation throughout the sphere. Key results are reported for two different source beam sizes (small and large) striking the sphere, with comparison to the solution for the isothermal wall boundary condition.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.