Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 48, 2005 - Issue 5
91
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Hydromagnetic Double-Diffusive Laminar Natural Convection in a Radiatively Participating Fluid

, , &
Pages 483-506 | Received 18 Nov 2004, Accepted 26 Feb 2005, Published online: 24 Feb 2007
 

ABSTRACT

Two-dimensional hydromagnetic double-diffusive convection of a radiatively participating fluid confined in a rectangular enclosure is studied numerically for fixed Prandtl, Rayleigh, and Lewis numbers, Pr = 13.6, Ra = 105, Le = 2. Uniform temperatures and concentrations are imposed along the vertical walls, while the horizontal walls are assumed to be adiabatic and impermeable. The damping and stabilization effects of an external horizontal magnetic field are studied for three different optical thicknesses of the semitransparent fluid as well as for an opaque medium. For moderate optical thickness, a steady compositionally dominated flow is observed for all values of Hartmann number considered, and the magnetic damping is remarkably lower than in the opaque medium, for which the flow is always thermally dominated. For optically thin and optically thick media, the thermally dominated flow is stabilized and becomes compositionally dominated as soon as the Hartmann number is increased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.