Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 48, 2005 - Issue 7
284
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Developing Free-Convection Gas Flow in a Vertical Open-Ended Microchannel Filled with Porous Media

, &
Pages 693-710 | Received 07 Sep 2004, Accepted 01 Apr 2005, Published online: 24 Feb 2007
 

Abstract

The developing hydrodynamic and thermal behaviors of free convection gas flow in a vertical open-ended parallel-plate microchannel filled with porous media are investigated numerically. The extended Darcy-Brinkman-Forchheimer model is used to model the flow in porous medium and the solid and fluid media are not assumed in local thermal equilibrium. The microflow regime considered is the slip flow regime. The slip in velocity and jump in temperature are found to decrease in the axial direction of the flow. The friction factor is found to decrease as Knudsen number, Forchheimer number and Grashof number are increased. However, the friction factor is found to increase as Darcy number increased. On the other hand, Nusselt number is found to decrease as Knudsen number, Darcy number and thermal conductivity ratio are increased, whereas it increased as Forchheimer number, Grashof number and Biot number are increased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.