Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 52, 2007 - Issue 12
142
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Studies on Combustion Characteristics of Interacting Pulverized Coal Particles at Various Oxygen Concentration

, , &
Pages 1101-1122 | Received 22 Oct 2006, Accepted 09 Mar 2007, Published online: 19 Sep 2007
 

Abstract

The two-dimensional laminar combustion characteristics of coal particles at various oxygen concentration levels of a surrounding gas have been numerically investigated. The numerical simulations, which use the two-step global reaction model to account for the surrounding gas effect, show the detailed interaction among the inter-spaced particles, undergoing devolatilization and subsequent char burning. Several parametric studies, which include the effects of gas temperature (1700 K), oxygen concentration, and variation in geometrical arrangement of the particles on the volatile release rate and the char burning rate, have been carried out. To address the change in the geometrical arrangement effect, multiple particles are located at various inter-spacings of 4–20 particle radii in both streamwise and spanwise directions. The results for the case of multiple particles are compared with those for the case of a single particle. The comparison indicates that the shift to the multiple particle arrangement resulted in the substantial change of the combustion characteristics and that the volatile release rate of the interacting coal particles exhibits a strong dependency on the particle spacing. The char combustion rate is controlled by the level of oxygen concentration and gas composition near particles during combustion. The char combustion rate is highly dependent on the particle spacing at all oxygen levels. The correlations of the volatile release rate and the change in total mass of particles are also found.

ACKNOWLEDGEMENTS

The authors wish to express their thanks for the financial support made by Combustion Engineering Research Center (CERC) of Korea.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.