Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 54, 2008 - Issue 3
178
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Fluid Dynamics and Heat Transfer Analysis of Three Dimensional Microchannel Flows with Microstructures

, &
Pages 293-314 | Received 24 Apr 2007, Accepted 26 Oct 2007, Published online: 19 May 2008
 

Abstract

The subsonic gas flows through straight rectangular cross-sectional microchannel with patterned microstructures was simulated using the direct simulation Monte Carlo (DSMC) method. An implicit treatment for low-speed inflow and outflow boundaries for the DSMC of the flows in microelectromechanical systems (MEMS) is employed. The 3-D microchannel flows are simulated with the cross-section aspect ratio ranging between 1 and 5. The comparison between 3-D cases and 2-D case shows that when the aspect ratio < 3, the two extra side-walls in the 3-D case have significant effects on the heat transfer and flow properties. When the aspect ratio increases, the flow pattern and heat transfer characteristics tend to approach those of 2-D results. The 2-D simplification is found to be reasonable when the cross-section aspect ratio is larger than 5. The microchannel flows with microstructures are also calculated with three different Knudsen numbers regime cases, and each case is calculated with three different microstructure temperatures, 273 K, 323 K, and 373 K. One Knudsen numbers regime ranges between 0.72 and 1.8, another regime ranges between 0.24 and 0.6 and the other regime ranges between 0.08 and 0.2. The computations show that the cooling and heating effects of the microstructure temperature on flow properties are enhanced with decreasing Knudsen number, and the higher microstructure temperature accelerates the velocity of the flow at the locations above the microstructures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.