Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 55, 2008 - Issue 1
196
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of Solidification Process in a Rotary Electromagnetic Stirrer

, &
Pages 42-57 | Received 01 Apr 2008, Accepted 09 Oct 2008, Published online: 22 Dec 2008
 

Abstract

A macroscopic model of the solidification process in a rotary electromagnetic stirrer is presented. The fluid flow, heat, and mass transfer inside a rotary stirrer are modeled using, 3-D swirl flow equations in which turbulent flow is simulated using a k − ϵ model. A hybrid model is used to represent the mushy zone, which is considered to be divided into two regions: a coherent region and a noncoherent region. Each region is represented by a separate set of governing equations. An explicit time-stepping scheme is used for solving the coupled temperature and concentration fields, while an implicit scheme is used for solving equations of motion. The coupling relations also include eutectic solidification, which is an important feature in modeling solidification with electromagnetic stirring, especially in the context of the formation of semi-solid slurry. The results from the present numerical solution agree well with those corresponding to experiments reported in literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.