Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 56, 2009 - Issue 2
502
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Forced Convection Heat Transfer from a Heated Square Cylinder to Power Law Fluids in the Unsteady Flow Regime

, &
Pages 109-131 | Received 02 Feb 2009, Accepted 14 May 2009, Published online: 22 Jul 2009
 

Abstract

Forced convection heat transfer to incompressible power law type non-Newtonian fluids from a heated square cylinder in the unsteady cross-flow regime has been studied numerically by solving the relevant momentum and thermal energy equations using a finite-volume method for the range of conditions 0.7 ≤ Pr ≤ 50, 60 ≤ Re ≤ 160, and 0.5 ≤ n ≤ 1.8. Over this range of Reynolds numbers, the flow is truly periodic for Newtonian and shear-thickening fluids, while in the case of shear-thinning fluids it becomes pseudo-periodic at high values of Re (≥140) and low values of n(≤ 0.6). This work is concerned only with the truly periodic regime and therefore the range of Reynolds number studied varies with the value of the power law index. The dependence of the local and average Nusselt number on the Reynolds number, Prandtl number, and power law index has been studied in detail. Broadly, shear-thinning (n < 1) fluid behavior promotes heat transfer, whereas shear-thickening (n > 1) impedes it. Further insights into the heat transfer phenomenon are provided in terms of isotherm contours in the vicinity of the cylinder for a range of values of the Reynolds number, Prandtl number, and power law index.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.