Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 56, 2009 - Issue 7
193
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-Solutal Buoyancy Induced Mixed Convection in a Backward Facing Step Channel using Velocity-Vorticity Formulation

, &
Pages 604-630 | Received 18 Mar 2009, Accepted 10 Aug 2009, Published online: 23 Oct 2009
 

Abstract

Double diffusive mixed convection in a horizontal channel with backward facing step is analyzed using velocity-vorticity formulation with a focus on the effect of recirculatory flow pattern on convective heat and mass transfer. The governing equations consist of vorticity transport equation with thermal and solutal buoyancy force terms, velocity Poisson equations, energy equation, and solutal concentration equation. Galerkin's weighted residual finite-element method has been employed to solve the equations for vorticity, velocity, temperature, and concentration fields in the computational domain. Test results are obtained to study the effect of thermal Grashof number (Gr T ), solutal Grashof number (Gr S ), and expansion ratio on the average Nusselt and Sherwood numbers. Results indicate that the convective heat transfer increased with increase in Gr T only when the Gr S number is in the aiding mode. The maximum local Nusselt number is always observed to be located adjacent to the downstream of the fluid reattachment point. Using the matched method of asymptotic expansions, correlations have also been developed for average Nusselt and Sherwood numbers for both cases of aiding and opposing buoyancy forces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.