Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 57, 2010 - Issue 5
276
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Radiation Element Method Coupled with the Lattice Boltzmann Method Applied to the Analysis of Transient Conduction and Radiation Heat Transfer Problem with Heat Generation in a Participating Medium

, &
Pages 346-368 | Received 11 Mar 2009, Accepted 12 Dec 2009, Published online: 08 Mar 2010
 

Abstract

This article deals with the implementation of the radiation element method (REM) with the lattice Boltzmann method (LBM) to solve a combined mode transient conduction-radiation problem. Radiative information computed using the REM is provided to the LBM solver. The planar conducting-radiating participating medium is contained between diffuse gray boundaries, and the system may contain a volumetric heat generation source. Temperature and heat flux distributions in the medium are studied for different values of parameters such as the extinction coefficient, the scattering albedo, the conduction-radiation parameter, the emissivity of the boundaries, and the heat generation rate. To check the accuracy of the results, the problem is also solved using the finite-volume method (FVM) in conjunction with the LBM. In this case, the data for radiation field are calculated using the FVM. The REM has been found to be compatible with the LBM, and in all the cases, results of the LBM-REM and the LBM-FVM have been found to provide an excellent comparison.

Under the Invitation Fellowship of the Japan Society for Promotion of Science (JSPS), the second co-author (SCM) contributed to the present work during his stay at the Institute of Fluid Science, Tohoku University, Sendai, Japan. SCM gratefully acknowledges the support of the JSPS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.