Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 59, 2011 - Issue 6
484
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

The Effects of Reynolds and Prandtl Numbers on Flow and Heat Transfer Across Tandem Square Cylinders in the Steady Flow Regime

&
Pages 421-437 | Received 18 Mar 2010, Accepted 10 Dec 2010, Published online: 03 Mar 2011
 

Abstract

The effects of Reynolds and Prandtl numbers on the fluid flow and heat transfer characteristics over two equal isothermal square cylinders placed in a tandem arrangement in cross flow have been investigated in this article. The spacing between the cylinders is fixed with four widths of the cylinder. The numerical results are presented for the range of conditions as 1 ≤ Re ≤ 30 and 0.7 ≤ Pr ≤ 1000 for three different blockage parameters B = 0.05, 0.25, and 0.5. Numerical simulations are performed with a finite volume code based on the PISO algorithm in a collocated grid system. The representative streamlines and isotherm patterns are presented and discussed. In addition, the overall drag coefficient and average Nusselt number are determined to elucidate the role of Reynolds and Prandtl numbers on flow and heat transfer. It is found that the flow is completely steady for the chosen ranges of the parameters.

Notes

*Presently on deputation at Central Mechanical Engineering Research Institute, Durgapur, India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.