Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 60, 2011 - Issue 8
355
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Forced Convection Heat Transfer Simulation Using Dissipative Particle Dynamics

, , , &
Pages 651-665 | Received 25 May 2011, Accepted 06 Aug 2011, Published online: 03 Nov 2011
 

Abstract

Dissipative particle dynamics (DPD) with energy conservation was applied to simulate forced convection in parallel-plate channels with boundary conditions of constant wall temperature (CWT) and constant wall heat flux (CHF). DPD is a coarse-grained version of molecular dynamics. An additional equation for energy conservation was solved along with conventional DPD equations, where inter-particle heat flux accounts for changes in mechanical and internal energies when particles interact with surrounding particles. The solution domain was considered to be two–dimensional with periodic boundary condition in the flow direction and additional layers of particles on the top and bottom of the channel to apply no-slip and wall temperature boundary conditions. The governing equation for energy conservation was modified based on periodic fully developed velocity and temperature conditions. The results were shown via velocity and temperature profiles across the channel cross-section. The Nusselt numbers for CWT and CHF were calculated from the temperature gradient at the wall using a second order accurate forward difference approximation. The results agreed well with the exact solutions to within 2.3%.

Acknowledgments

This work is supported by the National Science Foundation grant (NSF-OISE-0530203).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.