Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 60, 2011 - Issue 10
251
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

High-Frequency Pulsatile Pipe Flows Encompassing All Flow Regimes

, , , &
Pages 811-826 | Received 10 Apr 2011, Accepted 12 Sep 2011, Published online: 05 Dec 2011
 

Abstract

Time-varying pipe flows driven by a harmonically pulsating inlet velocity and spanning all flow regimes have been investigated by means of numerical simulations. The Reynolds number varied from 1000 to 5000 in response to the inlet velocity oscillations. The frequency of the pulsations was varied from 1 to 10 Hz. These frequencies are markedly higher than those previously studied (maximum value of 0.025 Hz). The motivation for the use of the elevated frequency range was engendered by practical applications such as cardiovascular and respiratory systems of mammals in addition to numerous industrial applications. The simulations made use of the modified Menter transitional model. The key conclusion found here is that the use of a quasi-steady model for the prediction of fully developed friction factors is not applicable for the higher frequencies considered here. The deviations between the actual and quasi-steady friction factor values increase markedly with increasing frequency. Backflow occurs near the wall as the flow transists from deceleration to acceleration. This transition gives rise to a change in the sign of the axial pressure gradient. The amplitudes of the pressure oscillations generated by the imposed velocity variations increase markedly with increasing frequency and diminish with increasing downstream distance from the pipe inlet. The effect of modifications of the Menter model was assessed by carrying out separate numerical solutions for the unmodified and modified models. The pressure oscillations corresponding to the respective models were compared, and it was found that the deviations are insignificant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.