151
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

An Alternative Strategy for the Solution of Heat and Incompressible Fluid Flow Problems via the Finite Volume Method

, &
Pages 393-411 | Received 27 Jan 2012, Accepted 25 May 2012, Published online: 23 Aug 2012
 

Abstract

The characteristic-based split (CBS) method has been widely used in the finite element community to facilitate the numerical solution of Navier-Stokes (NS) equations. However, this computational algorithm has rarely been employed in the finite volume context and the stabilization of the numerical solution procedure has traditionally been addressed differently in volume-based numerical schemes. In this article, the CBS-based finite volume algorithm is employed to formulate and solve a number of laminar incompressible flow and convective heat transfer problems. Both explicit and implicit versions of the algorithm are first explained and validated in the context of the solution of a lid-driven cavity problem and a backward facing step (BFS) flow problem. The modified algorithm, capable of modelling the coupling between the momentum and energy balance equations, is then introduced and used to solve a buoyancy-driven cavity flow problem. Computational results show that the CBS finite volume algorithm can be reliably used in the solution of laminar incompressible heat and fluid flow problems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.