Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 63, 2013 - Issue 2
300
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Mixed Convection Heat Transfer from Tandem Square Cylinders for Various Gap to Size Ratios

&
Pages 101-119 | Received 17 Apr 2012, Accepted 04 Aug 2012, Published online: 19 Nov 2012
 

Abstract

This article presents a two-dimensional numerical study on the fluid flow and mixed convection heat transfer around two equal isothermal square cylinders placed in a tandem arrangement and subjected to the cross flow of a Newtonian fluid at moderate Reynolds numbers. The spacing between the cylinders is varied by changing the gap to cylinder size ratio as S/d = 1, 2, 3, 4, 5, 7, and 10. The Reynolds number is considered in the range 50 ≤ Re ≤ 150. The mixed convection effect is studied for Richardson number range of 0–2, and the Prandtl number is chosen constant as 0.71. The flow is considered in an unbounded medium; however, fictitious confining boundaries are chosen to make the problem computationally feasible. Numerical calculations are performed by using a PISO algorithm-based finite volume solver in a collocated grid system. The effect of superimposed thermal buoyancy on flow and isotherm patterns are presented and discussed. The global flow and heat transfer quantities such as overall drag and lift coefficients, local and surface average Nusselt numbers, and Strouhal number are calculated and discussed for various Reynolds and Richardson numbers and spacing ratios. The notable contribution is the quantification of the critical spacing ratio which is observed to decrease with increasing thermal buoyancy effect for a specific Reynolds number.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.