Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 67, 2015 - Issue 11
274
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Performance of Microchannels with Patterned Super-Hydrophobic Surfaces Under Laminar Flow

&
Pages 1163-1186 | Received 23 Jun 2014, Accepted 04 Aug 2014, Published online: 12 Feb 2015
 

Abstract

This article presents the simulation results and the effects of slip length and fractal ratio on patterned super-hydrophobic surfaces in microchannels under laminar flow conditions. The effects of using different slip length ratios and fractal ratios on patterned surfaces were simulated numerically at two Reynolds number values. Dimensionless parameters such as Nusselt number, friction factor, and performance efficiency indicator were used to study the effects of boundary conditions (i.e., surface features) on microchannel thermal performance. The results show that the flow structure within a patterned microchannel experiences flow fluctuations near the wall boundary caused by the super-hydrophobic surface. The results also indicate that patterned surfaces with high slip length enhance heat transfer performance and reduce pressure drop.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.