Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 3
185
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Unsteady Conjugate Natural Convection in a Three-Dimensional Porous Enclosure

Pages 243-267 | Received 21 Jul 2014, Accepted 13 Oct 2014, Published online: 22 Apr 2015
 

Abstract

Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in porous volume formulated in dimensionless variables such as the temperature and vector potential functions within the Darcy–Boussinesq approach and the transient three-dimensional heat conduction equation based on the Fourier hypothesis for solid walls with corresponding initial and boundary conditions were solved using an iterative implicit finite-difference method. The main objective was to investigate the influence of the Rayleigh number 103 ≤ Ra ≤ 106, the Darcy number 10−5 ≤ Da ≤ 10−3, the thermal conductivity ratio 1 ≤ k1,2 ≤ 20, the solid wall thickness ratio 0.1 ≤ l/L ≤ 0.3, and the dimensionless time 0 ≤ τ ≤ 200 on the fluid flow and heat transfer. Comprehensive analysis of the effects of these key parameters on the average Nusselt number at the heat source surface was conducted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.