Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 10
541
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Constructal Parallel-Flow and Counterflow Microchannel Heat Sinks with Bifurcations

, , &
Pages 1087-1105 | Received 27 Oct 2014, Accepted 15 Jan 2015, Published online: 23 Jun 2015
 

Abstract

Based on the Constructal Theory, parallel-flow and counterflow microchannels heat sinks with bifurcations are put forward to manage the temperature nonuniformity and further reduce the temperature of microchannel heat sinks bottom plates. Several models with different lengths of bifurcations are designed, and the corresponding laminar fluid flow and heat transfer of all models have been investigated through numerical simulations. The pressure, velocity, temperature distributions, and averaged Nusselt numbers are analyzed in details, and then the overall thermal resistances and overall thermal performance are compared. The results show that the thermal performance of counterflow microchannel heat sinks is better than that of parallel-flow heat sinks for the same geometry, and bifurcation can improve the thermal performance for all cases. It is suggested that a proper design of the length of bifurcation counterflow microchannel can be employed to improve the overall thermal performance of microchannel heat sinks. The study complements and extends previous works.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.