Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 4
427
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model

, & ORCID Icon
Pages 254-276 | Received 10 Aug 2017, Accepted 25 Dec 2017, Published online: 12 Feb 2018
 

ABSTRACT

The natural convection heat transfer in a cavity filled with three layers of solid, porous medium, and free fluid is addressed. The porous medium and free fluid layers are filled with a nanofluid. The porous layer is modeled using the local thermal nonequilibrium (LTNE) model, considering the temperature difference between the solid porous matrix and the nanofluid phases. The nanofluid is modeled using the Buongiorno’s model incorporating the thermophoresis and Brownian motion effects. The governing equations are transformed into a set of nondimensional partial differential equations, and then solved using finite element method in a nonuniform grid. The effects of various nondimensional parameters are discussed. The results showed that the Brownian motion and thermophoresis effects result in significant concentration gradients of nanoparticles in the porous and free fluid layers. The increase in Rayleigh (Ra), Darcy (Da), the thermal conductivity ratios for the solid wall and solid porous matrix, i.e., Kr and Rk, enhanced the average Nusselt number. The increase in the convection interaction heat transfer parameter between the solid porous matrix and the nanofluid in the pores (H) increases the average Nusselt number in the solid porous matrix but decreases the average Nusselt number in the nanofluid phase of the porous layer.

Nomenclature

Latin symbols=
C=

nanoparticle volume fraction

C0=

ambient nanoparticle volume fraction

d=

wall thickness (m)

D=

dimensionless wall thickness

Da=

Darcy number

DB=

Brownian diffusion coefficient

DT=

Thermophoretic diffusion coefficient

g=

gravitational acceleration vector (m s−2)

hnfs=

volumetric heat transfer coefficient between the nanofluid and solid porous matrix (W m−3 K−1)

H=

interface heat transfer coefficient parameter

k=

thermal conductivity (W m−1 K−1)

K=

permeability of the porous medium (m2)

Kr=

nanofluid to solid porous matrix thermal conductivity ratio parameter

L=

square cavity size (m)

Le=

Lewis number

Nb=

Brownian motion parameter

Nr=

buoyancy ratio parameter

Nt=

thermophoresis parameter

Nu=

local Nusselt number

=

average Nusselt number

p=

pressure (Pa)

P=

dimensionless pressure

Pr=

Prandtl number

=

total interfacial heat flux (W m−2)

Qw=

dimensionless local heat transfer through the wall

=

dimensionless average heat transfer through the wall

Ra=

Rayleigh number

Rk=

wall to nanofluid thermal conductivity ratio parameter

s=

porous layer thickness (m)

S=

dimensionless porous layer thickness

Sh=

local Sherwood number

=

average Sherwood number

T=

temperature (K)

u, v=

velocity components along x, y directions, respectively (m s−1)

U, V=

dimensionless velocity components along x, y directions, respectively

x, y=

Cartesian coordinates (m)

X, Y=

dimensionless Cartesian coordinates

Greek symbols=
α=

effective thermal diffusivity (m2 s−1)

β=

thermal expansion coefficient of the fluid (K−1)

Δ=

difference value

ε=

porosity of the porous medium

θ=

dimensionless temperature

μ=

dynamic viscosity (kg m−1 s−1)

ν=

kinematic viscosity (m2 s−1)

ρ=

density (kg m−3)

(ρc)=

effective heat capacity (J K−1 m−3)

τ=

parameter defined by τ = (ρc)p/(ρc)nf

ϕ=

relative nanoparticle volume fraction

Ψ=

dimensionless stream function

Subscripts=
0=

ambient property

c=

cold

eff=

effective

h=

hot

max=

maximum

nf=

nanofluid

nff=

nanofluid of free fluid layer

nfp=

nanofluid of porous layer

p=

nanoparticle

s=

solid porous matrix

w=

wall

Nomenclature

Latin symbols=
C=

nanoparticle volume fraction

C0=

ambient nanoparticle volume fraction

d=

wall thickness (m)

D=

dimensionless wall thickness

Da=

Darcy number

DB=

Brownian diffusion coefficient

DT=

Thermophoretic diffusion coefficient

g=

gravitational acceleration vector (m s−2)

hnfs=

volumetric heat transfer coefficient between the nanofluid and solid porous matrix (W m−3 K−1)

H=

interface heat transfer coefficient parameter

k=

thermal conductivity (W m−1 K−1)

K=

permeability of the porous medium (m2)

Kr=

nanofluid to solid porous matrix thermal conductivity ratio parameter

L=

square cavity size (m)

Le=

Lewis number

Nb=

Brownian motion parameter

Nr=

buoyancy ratio parameter

Nt=

thermophoresis parameter

Nu=

local Nusselt number

=

average Nusselt number

p=

pressure (Pa)

P=

dimensionless pressure

Pr=

Prandtl number

=

total interfacial heat flux (W m−2)

Qw=

dimensionless local heat transfer through the wall

=

dimensionless average heat transfer through the wall

Ra=

Rayleigh number

Rk=

wall to nanofluid thermal conductivity ratio parameter

s=

porous layer thickness (m)

S=

dimensionless porous layer thickness

Sh=

local Sherwood number

=

average Sherwood number

T=

temperature (K)

u, v=

velocity components along x, y directions, respectively (m s−1)

U, V=

dimensionless velocity components along x, y directions, respectively

x, y=

Cartesian coordinates (m)

X, Y=

dimensionless Cartesian coordinates

Greek symbols=
α=

effective thermal diffusivity (m2 s−1)

β=

thermal expansion coefficient of the fluid (K−1)

Δ=

difference value

ε=

porosity of the porous medium

θ=

dimensionless temperature

μ=

dynamic viscosity (kg m−1 s−1)

ν=

kinematic viscosity (m2 s−1)

ρ=

density (kg m−3)

(ρc)=

effective heat capacity (J K−1 m−3)

τ=

parameter defined by τ = (ρc)p/(ρc)nf

ϕ=

relative nanoparticle volume fraction

Ψ=

dimensionless stream function

Subscripts=
0=

ambient property

c=

cold

eff=

effective

h=

hot

max=

maximum

nf=

nanofluid

nff=

nanofluid of free fluid layer

nfp=

nanofluid of porous layer

p=

nanoparticle

s=

solid porous matrix

w=

wall

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.