Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 11
238
Views
1
CrossRef citations to date
0
Altmetric
Articles

Wall boiling in a vertical annulus: Effect of inlet subcooling and mass flow rate

, &
Pages 776-793 | Received 31 Jan 2019, Accepted 23 Apr 2019, Published online: 10 Jun 2019
 

Abstract

Numerical studies on low flow rate convection boiling in a vertical annulus has been carried out to predict effects of inlet subcooling and mass flow rate. The aspect ratio of vertical annulus is 352 while the annular gap is 3.5 mm. RPI wall boiling model is used for the development of present code and the results are verified with those available in literature. The results show that onset of significant void (OSV) can be delayed to achieve maximum heat transfer by increasing the liquid subcooling and liquid mass flow rate. The average Nusselt number increases almost linearly with increase in the mass flow rate as well as the inlet subcooling. At high heat flux, very high wall temperatures are observed with low subcooling and low mass flow rates. This should be avoided for enhanced safety.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.