Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 9
346
Views
1
CrossRef citations to date
0
Altmetric
Research Article

2-D numerical study of ferrofluid droplet formation from microfluidic T-junction using VOSET method

, , , , , & show all
Pages 611-630 | Received 07 Nov 2020, Accepted 06 Dec 2020, Published online: 01 Feb 2021
 

Abstract

This article conducts a two-dimensional numerical model to simulate the ferrofluid droplet formation from microfluidic T-junction under inhomogeneous magnetic fields with diverse strengths. This external magnetic field is produced by two electric straight wires in a finite computational domain. A coupled volume-of-fluid and level-set interface tracking method (VOSET) is adopted to capture the evolution of two-phase interface. Meanwhile, a two-region computational domain method is designed for situations that the droplets are in close contact with the solid boundaries for the fluid flow. All 2-D numerical simulations are implemented by a self-developed CFD code, named as MHT (Multi-concept Heat Transfer). The numerical results show a significant inhibition effect in droplet formation at the presence of external magnetic field. With the increase of the current intensity, the magnetic force of the ferrofluid droplet increases and decreases periodically, especially when the electric current intensity is less than 60 A. The increasing current intensity enlarges the departure diameter and prolongs the departure period of ferrofluid droplet, especially when the current intensity in the range 12 A∼54A. In the cases of electric current within [12A, 54 A], the departure diameter growths monotonically and nearly in a quadratic manner with the increase of the current intensity. However, when the current intensity exceeds 60 A, the departure characteristic of ferrofluid will be changed due to ferrofluid droplet absorbed on the upper wall of the main channel.

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Funding

This work is supported by the China Postdoctoral Science Foundation (2018M6333506) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51721004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.