Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 16, 1989 - Issue 3
19
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

NATURAL CONVECTION IN A VERTICAL, ASYMMETRICALLY HEATED, PERMEABLE WALLED CHANNEL

, &
Pages 309-323 | Received 17 Jan 1989, Accepted 28 Mar 1989, Published online: 13 Jul 2010
 

Abstract

Developing natural convection in an asymmetrically heated, open-ended vertical channel was studied both experimentally and numerically. A tightly stretched, perforated, plastic radiation shield was suspended parallel to an electrically heated aluminum plate to form a vertical channel. In order to model the heat transfer and fluid flow in the vertical channel, the unsteady, two-dimensional Navier-Stokes equations were solved using a primitive variable, finite-difference formulation. Flow through the perforated boundary was modeled using a modified form of Darcy's law. Radiative exchange between the boundaries and between the boundaries and the environment was included. The predicted mass flow was within 3% of that measured experimentally. Both the average plate temperature and the bulk exit channel air temperature were within 1·2°C of the measured values. However, the predicted average temperature of the radiation shield was 8°C higher than that measured.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.