Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 17, 1990 - Issue 1
22
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

HYPERGOLIC COMBUSTION MODEL FOR FOUR-STROKE HEAT-BARRIER PISTON ENGINES

&
Pages 1-28 | Received 27 Mar 1989, Accepted 29 Jun 1989, Published online: 27 Apr 2007
 

Abstract

A numerical model for hyperbolic combustion within a four-stroke heat-barrier piston engine has been developed. An idealized fuel injector simulates the type of injector used in current experimental hypergolic combustion research. Significant to the modeling of this injector is the need to overcome the problems posed by a unit Mach number boundary condition at the injector orifice opening. Overall, the model is used to simulate a compression stroke and fuel injection portion of a power stroke. An implicit finite-difference solution of the governing flow field equations is used. The engine is modeled with the fuel injector being colocated with a single valve, making possible an axisymmetric solution. Because of its physics, hypergolic combustion dictates an eddy dissipation combustion approach. In the final run a 20 × 26 mesh is used for the greater region, which is made up of the flow field and a thin portion of the adjacent cylinder linings and piston.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.