Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 36, 1999 - Issue 2
193
Views
54
CrossRef citations to date
0
Altmetric
Original Articles

NUMERICAL ANALYSIS OF PARTIALLY HEATED VERTICAL PARALLEL PLATES IN NATURAL CONVECTIVE COOLING

Pages 129-151 | Published online: 29 Oct 2010
 

Abstract

This paper addresses the significance of adding insulated extensions to a parallel-plate channel in which the plates receive a uniform heat flux and a natural convection airflow is responsible for the cooling. The wall temperatures may decrease or increase, depending on whether the channel extensions are appended at the inlet or at the exit of the channel. The full elliptic conservation equations are solved numerically in an I-type composite computational domain. For the two cases treated, the pertinent results are reported in terms of wall temperature profiles, induced mass flow rates, and pressure profiles. The insulated extension placed downstream of the heated part implies a reduction of the maximum wall temperature. This effect is less relevant as the Rayleigh number increases. In addition, correlations have been obtained between the induced mass flow rate as well as the maximum wall temperatures and the Rayleigh number and the extension ratio in the investigated range of parameters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.