Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 5
144
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A new higher-order RBF-FD scheme with optimal variable shape parameter for partial differential equation

ORCID Icon, &
Pages 289-311 | Received 28 Mar 2019, Accepted 31 May 2019, Published online: 13 Jun 2019
 

Abstract

Radial basis functions (RBFs) with multiquadric (MQ) kernel have been commonly used to solve partial differential equation (PDE). The MQ kernel contains a user-defined shape parameter (ε), and the solution accuracy is strongly dependent on the value of this ε. In this study, the MQ-based RBF finite difference (RBF-FD) method is derived in a polynomial form. The optimal value of ε is computed such that the leading error term of the RBF-FD scheme is eliminated to improve the solution accuracy and to accelerate the rate of convergence. The optimal ε is computed by using finite difference (FD) and combined compact differencing (CCD) schemes. From the analyses, the optimal ε is found to vary throughout the domain. Therefore, by using the localized shape parameter, the computed PDE solution accuracy is higher as compared to the RBF-FD scheme which employs a constant value of ε. In general, the solution obtained by using the ε computed from CCD scheme is more accurate, but at a higher computational cost. Nevertheless, the cost-effectiveness study shows that when the number of iterative prediction of ε is limited to two, the present RBF-FD with ε by CCD scheme is as effective as the one using FD scheme.

Additional information

Funding

This work has been supported by the Ministry of Science and Technology (MOST) of the Republic of China (R.O.C) under the grant MOST105-2221-E-002-066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.