Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 40, 2001 - Issue 3
702
Views
250
CrossRef citations to date
0
Altmetric
Original Articles

A NEW BENCHMARK QUALITY SOLUTION FOR THE BUOYANCY-DRIVEN CAVITY BY DISCRETE SINGULAR CONVOLUTION

Pages 199-228 | Published online: 30 Nov 2010
 

Abstract

This article introduces a high-accuracy discrete singular convolution (DSC) for the numerical simulation of coupled convective heat transfer problems. The problem of a buoyancy-driven cavity is solved by two completely independent numerical procedures. One is a quasi-wavelet-based DSC approach, which uses the regularized Shannon's kernel, while the other is a standard form of the Galerkin finite-element method. The integration of the Navier-Stokes and energy equations is performed by employing velocity correction-based schemes. The entire laminar natural convection range of 10 3 h Ra h 10 8 is numerically simulated by both schemes. The reliability and robustness of the present DSC approach is extensively tested and validated by means of grid sensitivity and convergence studies. As a result, a set of new benchmark quality data is presented. The study emphasizes quantitative, rather than qualitative comparisons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.