Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 45, 2004 - Issue 1
180
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A COMPARATIVE ASSESSMENT WITHIN A MULTIGRID ENVIRONMENT OF SEGREGATED PRESSURE-BASED ALGORITHMS FOR FLUID FLOW AT ALL SPEEDS

, &
Pages 49-74 | Received 01 Apr 2003, Accepted 01 Jun 2003, Published online: 17 Aug 2010
 

Abstract

This article deals with the evaluation of six segregated high-resolution pressure-based algorithms, which extend the SIMPLE, SIMPLEC, PISO, SIMPLEX, SIMPLEST, and PRIME algorithms, originally developed for incompressible flow, to compressible flow simulations. The algorithms are implemented within a single grid, a prolongation grid, and a full multigrid method and their performance assessed by solving problems in the subsonic, transonic, supersonic, and hypersonic regimes. This study clearly demonstrates that all algorithms are capable of predicting fluid flow at all speeds and qualify as efficient smoothers in multigrid calculations. In terms of CPU efficiency, there is no global and consistent superiority of any algorithm over the others, even though PRIME and SIMPLEST are generally the most expensive for inviscid flow problems. Moreover, these two algorithms are found to be very unstable in most of the cases tested, requiring considerable upwind bleeding (up to 50%) of the high-resolution scheme to promote convergence. The most stable algorithms are SIMPLEC and SIMPLEX. Moreover, the reduction in computational effort associated with the prolongation grid method reveals the importance of initial guess in segregated solvers. The most efficient method is found to be the full multigrid method, which resulted in a convergence acceleration ratio, in comparison with the single grid method, as high as 18.4.

The financial support provided by the University Research Board at the American University of Beirut is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.