Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 48, 2005 - Issue 6
113
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Dispersion Relation-Preserving Upwinding Scheme for Incompressible Navier–Stokes Equations on NonStaggered Grids

, &
Pages 543-569 | Received 03 Jun 2005, Accepted 15 Jul 2005, Published online: 22 Aug 2006
 

ABSTRACT

In this article a scheme which preserves the dispersion relation for convective terms is proposed for solving the two-dimensional incompressible Navier–Stokes equations on nonstaggered grids. For the sake of computational efficiency, the splitting methods of Adams-Bashforth and Adams-Moulton are employed in the predictor and corrector steps, respectively, to render second-order temporal accuracy. For the sake of convective stability and dispersive accuracy, the linearized convective terms present in the predictor and corrector steps at different time steps are approximated by a dispersion relation-preserving (DRP) scheme. The DRP upwinding scheme developed within the 13-point stencil framework is rigorously studied by virtue of dispersion and Fourier stability analyses. To validate the proposed method, we investigate several problems that are amenable to exact solutions. Results with good rates of convergence are obtained for both scalar and Navier–Stokes problems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.