2,894
Views
60
CrossRef citations to date
0
Altmetric
Review Articles

2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review

ORCID Icon, ORCID Icon &
Pages 848-864 | Published online: 27 Oct 2020
 

Abstract

MXene, a novel class of 2-dimensional transition metal carbides has evolved as a promising material for various applications owing to its outstanding characteristics such as hydrophilicity, high electrical conductivity, surface area, and attractive topological structure. MXenes can form dispersion in common solvents and constitute composite with other nanomaterials, which can be utilized as effective transducers for molecular sensing. MXene-modified support materials, thus provide an intriguing platform for immobilization of target molecules onto their surface. The literature reveals that it has been increasingly utilized in the sensing of diverse types of analytes including glucose, pharmaceuticals, metals and dyes, cancer markers, pesticides, neurotransmitters, small valuable molecules, and so on. In this review, we summarize the recent updates in the MXene modified materials for sensing. For the convenience of our audience, we have distributed the analytes into categories and discussed them comprehensively. Not only we present the synthesis approach, electrochemical properties and surface chemistry of MXenes but also discussed briefly the current challenges and an outlook for future research in the related area.

Additional information

Funding

Open Access funding provided by the Qatar National Library. This study was supported by NRPU grant no. 10699 from HEC-Pakistan and partially by KIST School Partnership Project 2020 (SPP-2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.