350
Views
17
CrossRef citations to date
0
Altmetric
Invited Review Articles

Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 196-214 | Received 11 Apr 2019, Accepted 27 Nov 2019, Published online: 02 Jan 2020
 

Abstract

Insulin resistance is associated with an increased risk of several metabolic disorders including type 2 diabetes, hypertension and cardiovascular diseases. Advances over the last decade have expanded our understanding of the molecular mechanisms underlying insulin resistance; however, many details of the mechanisms causing insulin resistance remain unknown. Recently, attention has shifted toward the role of epigenetics in insulin resistance. In this regard, acetylation of the histone tails has been widely investigated for its role in influencing both metabolic and mitogenic cascades of insulin signaling. More specifically, histone acetyltransferases and histone deacetylases, as major modulators of chromatin accessibility and gene expression, have been studied to determine a possible interconnectivity between the special effects of lysine acetylation status and tyrosine phosphorylation networks on the target proteins of downstream pathways involved in both metabolic and mitogenic cascades of insulin signaling. There is accumulating evidence for the post-translational modification effects of IGFR, InsR, IRS1/2, PI3K, Akt, GLUT4, FoxO, PGC-1α, PPAR, AMPK and MAPKs on insulin resistance and glucose homeostasis. In this paper, we review the importance of acetylation of these factors in the regulation of insulin signaling and glucose metabolism, with a primary focus on the target proteins of downstream signaling of insulin. We also provide an update on the interplay between epigenetic modification and the cellular genome in the context of insulin signaling and describe the possible effect of the environment on this epigenetic regulation.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Acknowledgements

All authors have read the journal’s authorship agreement and that the manuscript has been reviewed and approved by all named authors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.