3,082
Views
64
CrossRef citations to date
0
Altmetric
Reviews

Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables

, , & ORCID Icon
 

Abstract

Consumers increasingly prefer healthy and nutritious diet worldwide, and demands for fresh fruits and vegetables are rapidly growing. Fresh produce are perishable commodities, and physical damage, moisture loss, biochemical changes, and postharvest microbial decay are primary causes of quality loss and reduced shelf-life. Packaging, including plastic films and coatings is an effective strategy to improve postharvest-life of whole and cut fruits and vegetables. However, plastic packaging is a significant environmental concern globally. Biopolymer based films and/or coatings are environment-friendly alternative packaging for food. But, these biopolymers, derived from plant, animal and microbial sources, lack some of the primary physico-chemical and mechanical properties compared to conventional plastic packaging. Reinforcement of biopolymer with nanomaterials addresses these shortcomings, and adds functional properties such as antimicrobial and/or antioxidant activities to the nanocomposites. Organic (e.g. nanocellulose fibrils), and inorganic (e.g. montmorillonite, zinc oxide, silver) nanomaterials are effective in achieving these improvements in biopolymer based nanocomposite. Plant-extracts and compounds derived from plant (e.g. essential oil) are also effective in imparting antimicrobial and antioxidant properties to biopolymer based nanocomposites. This is an extensive review of research works on effectiveness of biopolymer based nanocomposite films and coatings used for packaging of whole and cut fruits and vegetables to extend their shelf-life. Numerous reports have demonstrated effectiveness of biopolymer based nanocomposites in improvement in shelf-life of packaged and/or coated whole and cut fruits and vegetables by at least 4–5 days to as much as a few months.

    Highlights

  • Fresh produce are perishable commodities requiring package or coating.

  • Conventional plastics and waxes are major environmental and health concerns.

  • Biopolymer based nanocomposites are environment-friendly alternatives.

  • These nanocomposite films and coatings are effective in enhancing shelf-life.

Additional information

Funding

SK acknowledges ‘Sunrise Career Project (Ref: NECBH/2019-20/173)’ under North East Centre for Biological Sciences and Healthcare Engineering (NECBH) Twinning Outreach Programme hosted by Indian Institute of Technology Guwahati (IITG), Guwahati, Assam funded by Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India with number BT/COE/34/SP28408/2018 for providing necessary financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.