1,039
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Upconversion luminescent nanomaterials: A promising new platform for food safety analysis

, , &
 

Abstract

Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075052 and 21701031).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.