936
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes

, &
 

Abstract

Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (32072221, 31701031), the Natural Science Foundation of Jiangsu Province (BK20211292), China Postdoctoral Science Foundation (2016M601006), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.