539
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress in particulate reinforced aluminum composites fabricated via spark plasma sintering: Microstructure and properties

, ORCID Icon, , , &
 

Abstract

The poor mechanical and tribological properties limit the higher requirements of aluminum alloys in engineering and industrial applications, which leads to the rapid development of aluminum matrix composites (AMCs). Particulate reinforced AMCs have attracted extensive attention in automobile, electronics and military industries due to their low density, high strength, and excellent wear resistance. However, the interfacial reaction between reinforcements and the Al matrix tends to occur in conventional preparation processes owing to the higher reaction temperatures. The spark plasma sintering (SPS) technique is considered to be an efficient method for the fabrication of metal matrix composites, which can achieve rapid sintering, lower sintering temperatures, and higher densities than conventional fabrication processes. In addition, SPS can produce AMCs with excellent non-porous microstructure, fine grain size, and a strong bonding interface between reinforcement and Al matrix. Therefore, the interfacial reaction is effectively controlled and the structural integrity is maintained, resulting in enhanced strength and ductility. Based on the advantages of particulate reinforced AMCs and the SPS technique, the particulate reinforced AMCs fabricated by SPS have been extensively studied in recent decades, but have not been systematically evaluated. Therefore, this paper reviews the state-of-the-art particulate reinforced AMCs fabricated by SPS, focusing on the microstructure characterization, strengthening mechanisms, and mechanical and physical properties. Furthermore, the future research priorities and challenges of the high-performance particulate reinforced AMCs fabricated by SPS are also prospected.

Acknowledgments

The authors greatly acknowledge the financial supports from National Key R&D program of China (2022YFB3705701), National Natural Science Foundation of China (NSFC, 52192593), Natural Science Foundation of Heilongjiang Province (TD2020E001), and Heilongjiang Touyan Team.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.