667
Views
75
CrossRef citations to date
0
Altmetric
Research Article

The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Frogs and Its Role in Frog Development and Reproduction

, , &
Pages 117-161 | Published online: 10 Oct 2008
 

Abstract

Metamorphosis of the amphibian tadpole is a thyroid hormone (TH)-dependent developmental process. For this reason, the tadpole is considered to be an ideal bioassay system to identify disruption of thyroid function by environmental contaminants. Here we provide an in-depth review of the amphibian thyroid system with particular focus on the role that TH plays in metamorphosis. The amphibian thyroid system is similar to that of mammals and other tetrapods. We review the amphibian hypothalamic-pituitary-thyroid (HPT) axis, focusing on thyroid hormone synthesis, transport, and metabolism. We also discuss the molecular mechanisms of TH action, including the role of TH receptors, the actions of TH on organogenesis, and the mechanisms that underlie the pleiotropic actions of THs. Finally, we discuss methods for evaluating thyroid disruption in frogs, including potential sites of action, relevant endpoints, candidate protocols for measuring thyroid axis disruption, and current gaps in our knowledge. The utility of amphibian metamorphosis as a model for evaluating thyroid axis disruption has recently led to the development of a bioassay using Xenopus laevis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.