1,473
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers

, & ORCID Icon
Pages 41-60 | Received 23 Nov 2018, Accepted 09 Jan 2019, Published online: 18 Feb 2019
 

Abstract

Dysregulation of isoprenoid biosynthesis is implicated in numerous biochemical disorders that play a role in the onset and/or progression of age-related diseases, such as hypercholesterolemia, osteoporosis, various cancers, and neurodegeneration. The mevalonate metabolic pathway is responsible for the biosynthesis of the two key isoprenoid metabolites, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Post-translational prenylation of various proteins, including the small GTP-binding proteins (GTPases), with either FPP or GGPP is vital for proper localization and activation of these proteins. Prenylated GTPases play a critical role in cell signaling, proliferation, cellular plasticity, oncogenesis, and cancer metastasis. Pre-clinical and clinical studies strongly suggest that inhibition of protein prenylation can be an effective treatment for non-skeletal cancers. In this review, we summarize the most recent drug discovery efforts focusing on blocking protein farnesylation and/or geranylgeranylation and the biochemical and structural data available in guiding the current on-going studies in drug discovery. Furthermore, we provide a summary on the biochemical association between disruption of protein prenylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR) signaling, and cancer.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.