Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 169, 2014 - Issue 3
87
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Discussion on the usefulness of dose dynamic multi-leaf collimator-based plan to overcome dose limit of spinal cord in high-dose radiotherapy

, , , &
Pages 265-275 | Received 07 Jun 2013, Accepted 18 Sep 2013, Published online: 11 Oct 2013
 

Abstract

In this study, the conventional plan was compared with the plan that was based on a dose dynamic multi-leaf collimator (MLC), and a dose dynamic MLC was used to evaluate its usefulness. Then, this study examined if it was possible to perform a high-dose radiation therapy by adjusting the dose limit of the spinal cord when the dose dynamic MLC-based plan was used. First of all, linear accelerator was used to compare the conventional plan with the dose dynamic MLC-based plan. Then, the study was conducted in two methods in order to examine the proper range of the shield for the spinal cord when the dose dynamic MLC was used to adjust the dose of the spinal cord. In the first method, X-omat film was used to perform film dosimetry. In the second method, radiation treatment planning (RTP) system was used to find out the proper range among 0, 3, 6, and 9 mm. When film scan was performed in the each range, respectively, from the spinal cord and under the same conditions, it was confirmed to be appropriate to use the range of 3 mm. When the RTP system was used to perform planning in the shield range of each range, respectively, from the spinal cord, dose-volume histogram (DVH) was a slight difference could be found in the region from 25% to 35%. On the contrary, no radiation exposure was found in the region of 35% or higher for all of the each range. Consequently, if MLC is selected in consideration of the planning target volume (PTV), the most proper value can be obtained by selecting the range of 3 mm. Next, the DVH was compared to examine the relationship in PTV when the each range was used for planning. All of the ranges showed the same pattern up to the point of 90%. However, the results were different in the region of higher than 90% because the dose was low for the spinal cord, and a relatively useful dose was used for PTV when the range was 3 mm.

Acknowledgements

“This study was funded by the program of the Kyung Hee University for the young medical researcher in 2007” (KHU-20071522).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.