Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 165, 2010 - Issue 4
73
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Defect engineering and opto electronic property modifications by 1.5 MeV Li+ implantation on nano crystalline MgIn2O4 thin films

, , &
Pages 265-276 | Received 12 Nov 2009, Published online: 20 Apr 2010
 

Abstract

Spinel MgIn2O4 thin films were deposited on quartz substrates by the chemical spray pyrolysis technique using metal organic precursors at 450°C. Energetic 1.5 MeV Li+ ions were implanted to various fluences of 1013, 1014 and 1015 ions/cm2 onto insulating MgIn2O4 films using a 9 SDH-2, NEC, 3MV accelerator to modify the material properties and surface nature. X-ray diffraction analysis was carried out to identify the changes in the crystallinity and grain orientations before and after implantations. Before implantation, the grains of polycrystalline MgIn2O4 were randomly oriented [(222), (311), (442) and (511)], and after implantation they exhibited a tendency to realign the crystallites along the even (hkl) planes [(222) and (442)]. On the Li+-implanted sample, one or more grains combine together and form bigger grains along with shallow pits, as observed through the atomic force micrographs. The as-deposited films have a percentage transmittance of 70–80% in the wavelength range 400–800 nm and the observed optical transmittance was less in Li+-implanted MgIn2O4 films. The index of refraction and the extinction co-efficient values were respectively n=1.98 and k=10−2 in the visible region. However, the DC electrical conductivity of Li+-implanted films to a fluence of 1015 ions/cm2 was nearly 0.7 S/cm at room temperature. The efficiency of the carrier generation was increased from 13.41% to 26.81% on annealing the implanted sample to lower fluence (1013 ions/cm2).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.