38
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

ESI Investigation of Non-Covalent Complexes between Phosphorylated Daidzein Derivatives and Insulin

, , , &
Pages 527-537 | Published online: 21 Jun 2008
 

Abstract

Since the end of the last century, ESI-MS has begun to be used to reveal the existence of non-covalent complexes, providing important stoichiometric information. Many researchers have reported the use of ESI-MS to determine dissociation constants of such complexes. Gas phase dissociation constants measured in this way have been found to correlate well with those measured by solution based techniques.Citation 1 , Citation 2 In this article, ESI results show that all the phosphorylated daidzein derivatives can form non-covalent complexes with the protein insulin, while non-covalent complexes were not detected in solutions of unphosphorylated daidzein and insulin. The relative affinity of each non-covalent complex was obtained according to its different decomposition orifice voltage. Compound e has the highest disappearing orifice voltage and therefore the strongest binding affinity. The relative stability of the non-covalent complexes was closely associated with the length of the hydrophobic chain.

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 20472076 and 20175026) and Henan Academic Foundation of Science and Technology for their financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.