250
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and In Vitro Anti-HIV Activity of Some New Schiff Base Ligands Derived from 5-Amino-4-phenyl-4H-1,2,4-triazole-3-thiol and Their Metal Complexes

, &
Pages 2891-2901 | Received 08 Jul 2008, Accepted 29 Oct 2008, Published online: 03 Nov 2009
 

Abstract

New Schiff base ligands (6–9) derived from 5-amino-4-phenyl-4H-1,2,4-triazole-3-thiol 1 and substituted benzaldehydes (2–5) as well as their metal complexes with Cu(II), Fe(II), Au(III), and Mn(II) (12–17) have been synthesized. A new benzothiazole derivative (11) was prepared from coupling of 7 with N-(benzothiazol-2-yl)-2-chloroacetamide 10. Their spectral properties were investigated. The newly designed and synthesized Schiff base ligands and the metal complexes were assayed for anti-HIV-1 and HIV-2 activity by examination of their inhibition of HIV-induced cytopathogenicity in MT-4 cells. Compounds 11 and 16 were found to be the most active inhibitors in cell culture (EC50 = 12.2 μg/mL (SI = 4) and > 2.11 μg/mL (SI = > 1), respectively) against HIV-1, whereas 11 showed inhibition against HIV-2 of EC50 > 10.2 μg/mL with SI = 9, which provided a good lead for further optimization.

We thank Professors E. De Clercq and Ch. Pannecouque, Rega Institute for Medical Research, Belgium, for the anti-HIV screening.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.