208
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Antimicrobial Activities of Some 6-Methyl-3-Thioxo-2,3-Dihydro-1,2,4-Triazine Derivatives

, &
Pages 400-409 | Received 24 Jun 2012, Accepted 14 Nov 2012, Published online: 28 Jan 2014
 

Abstract

4-Arylidene-imidazole derivatives (4a,b) were readily prepared by reacting 4-am- ino-6-methyl-3–thioxo-2,3–dihydro[1,2,4]triazin-5(4H)-one (1) with 4-arylidene-2-phenyl- 4H-oxazol-5-one (2). Reaction of 1 with some aromatic aldehydes in presence of triethylphosphite exclusively afforded the corresponding aminophosphonates 5a-c. Reaction of 1 with 3-phenyl-1H-quinazoline-2,4-dione (6a) and/or 3-phenyl-2-thioxo-2,3-dihydro- 1H-quinazolin-4-one (6b) gave 2-(6-methyl-5-oxo-3-thioxo-2,5-dihydro-3H-[1,2,4]triazin-4-ylimino)-3-phenyl-2,3-dihydro-1H-quinazolin-4-one (7). Moreover, on treating 1 with 2-phenylbenzo[d][1,3]thiazine-4-thione (8), 6-methyl-4-(2-phenyl-4-thioxo-4H-quinazolin-3-yl)-3-thioxo-3,4-dihydro-2H-[1,2,4]triazine-5-one (9) was obtained in 65% yield. Reaction of 1 with 4-sulfonylaminoacetic acid derivatives (10a,b) afforded the corresponding sulfonamides (11a,b), respectively. Acid hydrolysis of 11a afforded 7-aminomethyl-3-methyl[1,3,4]thiadiazole[2,3-c][1,2,4]triazin-4-one (12). 4-Amino-6-methyl-3-(morpholine-4-ylsulfanyl)-4H-[1,2,4]triazin-5-one (14) was prepared by reacting compound 1 with morpholine in presence of KI/I2, while 3,3′-bis(4-amino-6-methyl-5-oxo-triazinyl)disulfide (16) was obtained by oxidation of 1 with lead tetraacetate. The antimicrobial activity of the products was evaluated against Gram-positive and Gram-negative bacteria as well as the fungus Candida albicans.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional text, figures, and tables.]

GRAPHICAL ABSTRACT

Acknowledgments

Authors are very thankful to Prof. A. R. El-Shanshoury (Microbiology Unit, Botany Department, Faculty of Science, Tanta University, Tanta, Egypt) for his effort in the experimental work and discussion of the antimicrobial part. The authors are also thankful to the Danish International Development Agency (DINIDA) for its support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.