148
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Use of Neural Network and Genetic Algorithm to Model Scanning Electron Microscopy for Enhanced Image of Material Surfaces

, , , &
Pages 382-387 | Received 15 May 2010, Accepted 08 Jun 2010, Published online: 08 Apr 2011
 

Abstract

Scanning electron microscope (SEM) is a typical means to take an image of material surfaces. Enhancing the resolution of surface images is complicated by the presence of complex SEM components. SEM characteristics are studied as a function of its component by means of a statistical factor analysis as well as by constructing a neural network prediction model. A face-centered Box Wilson experiment was conducted to collect experimental data. The SEM components examined include an acceleration voltage and a filament current, a working distance, and a magnification. Main effect analysis revealed a much larger impact of the current or the distance than others. A generalized regression neural network (GRNN) was used to build a prediction model of SEM resolution. The model performance was optimized by using a genetic algorithm (GA). An optimized model yielded an improved prediction of 24% over statistical regression model. A higher resolution was achieved by increasing the voltage, the current, and the distance in particular at lower magnification. The SEM resolution was explained by the variation in focal length and the depth of field in view of secondary electrons.

ACKNOWLEDGMENT

This work was supported by the Seoul R&BD Program (Grant No. 10583).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.