530
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Drop-on-Demand Direct Printing of Colloidal Copper Nanoparticles by Electrohydrodynamic Atomization

, , , , &
Pages 1196-1201 | Received 01 Oct 2010, Accepted 21 Dec 2010, Published online: 18 Aug 2011
 

Abstract

Electrohydrodynamic inkjet printing technology has recently become attractive in many industrial fabrication fields mainly due to its advantage of smaller drop generation as compared to the diameter of the delivery nozzle. In this article, drop-on-demand (DoD) printing of colloidal solution containing copper nanoparticles through electrohydrodynamic atomization (EHDA) is investigated. By applying a novel forward multistep waveform (FMSW) superimposed on dc biased voltage, charged fluid drops containing copper nanoparticles are deposited on glass substrate. The main focus of this study is to generate uniform droplets of conductive copper ink in a controlled fashion by varying amplitude and frequency of the applied waveform. The deposited patterns show a series of uniform-sized drops with regular spacing. Using this DoD printing technique, it is feasible to print a variety of patterns of dots and conductive continuous or discontinuous lines.

ACKNOWLEDGMENT

This study was supported by the Ministry of Knowledge Economy, South Korea, through the “Strategy Technology Development Project.”

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.