143
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Genetic Algorithm–Based Design and Development of Particle-Reinforced Silicone Rubber for Soft Tooling Process

, &
Pages 753-760 | Received 11 Dec 2012, Accepted 04 Jan 2013, Published online: 08 Jul 2013
 

Abstract

In order to enhance the solidification rate of soft tooling process, design of a silicone rubber composite mold material is carried out based on multiobjective optimization (MOO) of conflicting objectives. The elitist nondominated sorting genetic algorithm (NSGA-II), a genetic algorithm–based MOO tool, is used to find the optimum parameters first by obtaining the Pareto-optimal front and then selecting a single solution or a small set of solutions for manufacturing applications using a suitable multi-criterion decision making technique. Based on the optimal design parameters, an experimental study in soft tooling process is carried out in particle-reinforced silicone, and it is observed that the solidification time is minimized appreciably keeping the same advantages of soft tooling process.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.