199
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Multiobjective Optimization of Laser Milling Parameters of Microcavities for the Manufacturing of DES

, &
Pages 1370-1378 | Received 24 Jun 2013, Accepted 15 Jul 2013, Published online: 13 Dec 2013
 

Abstract

A multiobjective optimization of the laser milling process of microcavities for the manufacturing of drug eluting stents (DES) is presented. The diameter, depth, and volume error are considered to be optimized in function of the process parameters (scanning speed, laser intensity, and pulse frequency). Several experiments are carried out following a design of experiments in a nanosecond pulsed Nd:YAG laser machine on 316 L Stainless Steel as a work material. Two different geometries are studied, and they are considered as another variable for the model. The multiobjective optimization problem is solved by NSGA-II algorithm, and the nondominated Pareto-optimal fronts are obtained. The capability of the process to manufacture within a level of error is also investigated. Relative error capability maps for different scale of features are presented.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the GREP research group from the UdG, the Tecnologico de Monterrey for the facilities provided during the experiments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.