751
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Cutting Force and Surface Roughness Characterization in Cryogenic High-Speed End Milling of Ti–6Al-4V ELI

, , , &
Pages 350-356 | Received 21 Jul 2013, Accepted 13 Nov 2013, Published online: 04 Mar 2014
 

Abstract

This study investigates the cutting forces induced during high-speed end milling of titanium alloy (Ti–6Al-4V ELI) as well as the surface quality of the milled surfaces. The high-speed machining was performed using carbide tool of coated and uncoated types at three cutting speeds of 200, 250, and 300 mm/min and two feed rates of 0.03 and 0.06 mm/tooth. Surface integrity was characterized in terms of surface roughness (Ra) and morphology. Cutting speed was found to be inversely proportional to the resultant cutting force at any cutting conditions. Cutting force in the X direction displayed higher sensitivity against cutting conditions. The results showed that feed rate is proportional to cutting force in X and Y directions regardless of tool type. Under the fixed feed rate condition, cutting force decreased at higher cutting speed for both tools. It was also found that uncoated tool induces less cutting force compared to coated one. High-speed end milling using uncoated tool provided better surface finish than using a coated carbide tool, especially at lower cutting conditions. However when coated carbide tool was used, surface roughness improved significantly with the increase in cutting speed. In contrast, almost opposite phenomenon was observed when uncoated tool was used.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lmmp.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.