272
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Revisiting Arc, Metal Flow Behavior in Flux Activated Tungsten Inert Gas Welding

Pages 343-351 | Received 03 Apr 2015, Accepted 08 Jun 2015, Published online: 05 Oct 2015
 

Abstract

Tungsten inert gas (TIG) welding is commonly used for quality joining of ferrous and non-ferrous materials. But lower depth of penetration is one major shortcoming of TIG and more numbers of passes are required for thick plate joining. Use of activated flux layer on workpiece remarkably enhances penetration. In the present work, arc and metal flow behavior are studied to revisit and validate the presence and role of governing forces responsible for higher penetration in flux activated TIG (ATIG) welding. Arc behavior, material flow patterns are studied during conventional and activated TIG welding for AISI 304 stainless steel using four different activated fluxes by carrying out welding (when arc is moving) as well as keeping the arc halted (stationary arc) for all cases. Results clearly demonstrate the presence of electromagnetic Lorentz force and surface tension induced reverse Marangoni flow (strongly centripetal). These forces also push the metal flow downward near the center region of the molten pool and in many occasions penetration reaches beyond plate thickness in ATIG welding.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.