613
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental Investigation on Ultrasonic Vibration-Assisted Grinding of SiO2f/SiO2 Composites

, , , &
Pages 887-895 | Received 23 Jan 2015, Accepted 26 Aug 2015, Published online: 17 Dec 2015
 

Abstract

Fiber-reinforced ceramic matrix composite (FRCMC) have been widely used in aerospace and other high-technology fields due to their excellent mechanical and physical properties. However, FRCMC is a kind of typical material with anisotropic and inhomogeneous structure; thus, it is difficult to guarantee the precision and surface quality using traditional machining. The present paper employed ultrasonic vibration-assisted grinding (UAG) to machine 2.5D woven SiO2f/SiO2 composites. By comparing the grinding force, surface microstructure, chip formation, surface topography and surface roughness with and without ultrasonic vibration for the machining of SiO2f/SiO2 composites, the feasibility of UAG on FRCMC was investigated experimentally. In addition, the effects of the process parameters (including spindle speed, feed rate, grinding depth, grain mesh size and ultrasonic power) on grinding force and surface roughness were studied through an orthogonal experiment. The research obtained can be a useful technical support for the development of UAG in the machining of FRCMC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.